Sections and topics of the discipline	Total	Including	
	hours	Lectures	Practical work
1. History of development and main directions of	2	2	
modern soil microbiology.			
Descriptive period in the history of microbiology.			
Physiological stage in the development of microbiology.			
Studies by Louis Pasteur and Robert Koch. Discovery of			
chemosynthesis by S.N. Vinogradsky. Role of microbial			
communities in various natural habitats. Development of			
soil algology and mycology (E.A. Shtina, M.M.			
Gollerbakh, T.G. Mirchink). Microbiological method of			
production of amino acids (N.A. Krasilnikov).			
2. Basic research methods in soil microbiology.	4	2	2
Microscopy (light, fluorescent, electron microscopy).			
Analytical methods (physiological, biochemical,			
genetic, molecular biological). Methods for isolation of			
pure cultures and cultivation of soil microorganisms.			
Elective cultivation methods. Nutrient media and			
conditions for growth of microorganisms. Sterilization			
methods.			
3. Main objects of study of soil biota.	2	2	
Characterization of main groups of eukaryotic			
organisms comprising the soil biota – algae, soil			
animals, fungi, lichens – and their role in natural			
habitats. Characterization of specific features of			
ontogenesis of individual groups of soil organisms.			
4. Morphology of microorganisms. Modern	4	2	2
classification of microorganisms.			
Structure and composition of the prokaryotic cell. Size,			
shape and grouping of cells. Reproduction and			
development of prokaryotes. Viruses and phages.			
Fundamentals of modern taxonomy of microorganisms.			
5. Biosynthetic processes in microorganisms.	4	2	2
Energy processes in microorganisms. General scheme of			
catabolism. Lactic acid, butyric acid, and alcohol			
fermentation types. Anaerobic and aerobic breathing.		-	
6. Carbon assimilation.	4	2	2
Carbon fixation processes. Methane formation. Methane			
oxidation. Decomposition of complex organic nitrogen-			
free substances (cellulose, lignin, pectin, starch, etc.) by			
microorganisms. Formation of humus. Use of light			
energy by halobacteria.			
7. Nitrogen metabolism.	4	2	2
Biological fixation of nitrogen. Biochemistry of nitrogen			
fixation. Microorganisms capable of nitrogen fixation.			
Significance of nitrogen fixation process. Bacterial			
preparations based on nodule bacteria. Oxidation of			
ammonia and nitrites. Denitrification and reduction of			
nitrates.			

Syllabus of the program «Soil microbiology»

8. Sulfur cycle. Transformations of phosphorus, iron,	4	2	2
manganese and other elements by microorganisms.	·	-	2
Formation of hydrogen sulfide during sulfur reduction.			
Sulfate breathing. Magnetic bacteria. Heterotrophic			
iron-oxidizing bacteria. Black smokers. Oxidation of			
ferrous iron. Mineralization of organophosphorus			
compounds. Aluminum metabolism.			
9. Antagonistic activity and antibiotic resistance of	2	2	
microorganisms.	L	2	
Secondary metabolites of microorganisms. What are			
antibiotics? Evolutionary significance, classification and			
areas of application of antibiotics. Antibiotic resistance			
of microorganisms and methods for determining			
antibiotic activity of microorganisms.			
10. Action of physical and chemical factors on	2	2	
microorganisms. Specificity of the soil as a habitat.			
Effects of acidity of the medium (pH), temperature,			
hydrostatic pressure, oxygen presence, radiation, water			
activity on microorganisms. Adhesion of			
microorganisms and activity of adhered cells. Gas phase			
of soils, development of microorganisms in films and			
capillaries.			
11. Microorganisms as objects of biotechnology.	2	2	
Practical application of microorganisms. Use of			
microorganisms in food production (kvass, beer, wine,			
cheese, bread, etc.). Production of individual chemical			
substances (hormones, antibiotics, plant growth			
stimulants). Leaching of metals from ores.			
Bioremediation of natural objects contaminated with oil.			
Negative activity of microorganisms in relation to			
human activities (food spoilage, microbial corrosion of			
industrial facilities, microbial contamination of soil,			
water, atmosphere, pathogenicity to humans, animals			
and plants).			
· · · · · · · · · · · · · · · · · · ·	2	2	
12. Basic principles of biological indication and diagnostics of soils. Interpetions between ergenisms	L	2	
diagnostics of soils. Interactions between organisms.			
Soil algological indication. Biological indication of soil			
contamination and soil self-cleaning. Lichen indication.			
Microorganisms of rhizosphere and rhizoplane.			
Mycorrhizal fungi.			
Total:	36	24	12